
NAG C Library Function Document

nag_1d_cheb_interp (e01aec)

1 Purpose

nag_1d_cheb_interp (e01aec) constructs the Chebyshev-series representation of a polynomial interpolant to
a set of data which may contain derivative values.

2 Specification

void nag_1d_cheb_interp (Integer m, double xmin, double xmax, const double x[],
const double y[], const Integer p[], Integer itmin, Integer itmax, double a[],
double perf[], Integer *num_iter, NagError *fail)

3 Description

Let m distinct values xi of an independent variable x be given, with xmin � xi � xmax, for i ¼ 1; 2; . . . ;m.
For each value xi, suppose that the value yi of the dependent variable y together with the first pi
derivatives of y with respect to x are given. Each pi must therefore be a non-negative integer, with the

total number of interpolating conditions, n, equal to mþ
Pm

i¼1 pi.

nag_1d_cheb_interp (e01aec) calculates the unique polynomial qðxÞ of degree n� 1 (or less) which is

such that qðkÞðxiÞ ¼ y
ðkÞ
i for i ¼ 1; 2; . . . ;m; k ¼ 0; 1; . . . ; pi. Here qð0ÞðxiÞ means qðxiÞ. This polynomial

is represented in Chebyshev-series form in the normalised variable �xx, as follows:

qðxÞ ¼ 1
2
a0T 0ð�xxÞ þ a1T 1ð�xxÞ þ . . .þ an�1Tn�1ð�xxÞ;

where

�xx ¼ 2x� xmin � xmax

xmax � xmin

so that �1 � �xx � 1 for x in the interval xmin to xmax, and where T ið�xxÞ is the Chebyshev polynomial of the
first kind of degree i with argument �xx.

(The polynomial interpolant can subsequently be evaluated for any value of x in the given range by using
nag_1d_cheb_eval2 (e02akc). Chebyshev-series representations of the derivative(s) and integral(s) of qðxÞ
may be obtained by (repeated) use of nag_1d_cheb_deriv (e02ahc) and nag_1d_cheb_intg (e02ajc).)

The method used consists first of constructing a divided-difference table from the normalised �xx values and
the given values of y and its derivatives with respect to �xx. The Newton form of qðxÞ is then obtained from
this table, as described in Huddleston (1974) and Krogh (1970), with the modification described in
Section 8.2. The Newton form of the polynomial is then converted to Chebyshev-series form as described
in Section 8.3.

Since the errors incurred by these stages can be considerable, a form of iterative refinement is used to
improve the solution. This refinement is particularly useful when derivatives of rather high order are given
in the data. In reasonable examples, the refinement will usually terminate with a certain accuracy criterion
satisfied by the polynomial (see Section 7). In more difficult examples, the criterion may not be satisfied
and refinement will continue until the maximum number of iterations (as specified by the input parameter
itmax) is reached.

In extreme examples, the iterative process may diverge (even though the accuracy criterion is satisfied): if a
certain divergence criterion is satisfied, the process terminates at once. In all cases the function returns the
‘best’ polynomial achieved before termination. For the definition of ‘best’ and details of iterative
refinement and termination criteria, see Section 8.4.

e01 – Interpolation e01aec

[NP3645/7] e01aec.1



4 References
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5 Parameters

1: m – Integer Input

On entry: m, the number of given values of the independent variable x.

Constraint: m � 1.

2: xmin – double Input

3: xmax – double Input

On entry: the lower and upper end-points, respectively, of the interval ½xmin; xmax�. If they are not
determined by the user’s problem, it is recommended that they be set respectively to the smallest
and largest values among the xi.

Constraint: xmin < xmax.

4: x½m� – const double Input

On entry: x½i� 1] must be set to the value of xi, for i ¼ 1; 2; . . . ;m. The x½i� need not be ordered.

Constraint: xmin � x½i� � xmax, and the x½i� must be distinct.

5: y½dim� – const double Input

Note: the dimension, dim, of the array y must be at least mþ
Pm�1

i¼0 p½i�.
On entry: the given values of the dependent variable, and derivatives, as follows:

The first p1 þ 1 elements contain y1; y
ð1Þ
1 ; . . . ; y

ðp1Þ
1 in that order.

The next p2 þ 1 elements contain y2; y
ð1Þ
2 ; . . . ; y

ðp2Þ
2 in that order.

..

.

The last pm þ 1 elements contain ym; y
ð1Þ
m ; . . . ; yðpmÞm in that order.

mþ
Pm�1

i¼0 p½i� is the total number of interpolating conditions, n.

6: p½m� – const Integer Input

On entry: p½i� 1] must be set to pi, the order of the highest-order derivative whose value is given
at xi, for i ¼ 1; 2; . . . ;m. If the value of y only is given for some xi then the corresponding value
of p½i� 1� must be zero.

Constraint: p½i� 1� � 0 for i ¼ 1; 2; . . . ;m.

7: itmin – Integer Input

8: itmax – Integer Input

On entry: respectively the minimum and maximum number of iterations to be performed by the
function (for full details see Section 8.4, second paragraph). Setting itmin and/or itmax negative or
zero invokes default value(s) of 2 and/or 10, respectively.

The default values will be satisfactory for most problems, but occasionally significant improvement
will result from using higher values.

Suggested value: itmin ¼ 0 and itmax ¼ 0.
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9: a½dim� – double Output

Note: the dimension, dim, of the array a must be at least mþ
Pm�1

i¼0 p½i�.
On exit: a½i� contains the coefficient ai in the Chebyshev-series representation of qðxÞ, for
i ¼ 0; 1; . . . ; n� 1.

10: perf½dim� – double Output

Note: the dimension, dim, of the array perf must be at least ipmaxþmþ
Pm�1

i¼0 p½i� þ 1, where

ipmax is the maximum element of p.

On exit: perf ½k�, for k ¼ 0; 1; . . . ; ipmax, contains the ratio of Pk, the performance index relating to
the kth derivative of the qðxÞ finally provided, to 8 times the machine precision.

perf ½ipmaxþ j�, for j ¼ 1; 2; . . . ; n, contains the jth residual, i.e., the value of y
ðkÞ
i � qðkÞðxiÞ,

where i and k are the appropriate values corresponding to the jth element in the array y (see
description of y in Section 5).

This information is also output if fail.code ¼ NE ITER FAIL or NE NOT ACC.

11: num_iter – Integer * Output

On exit: num_iter contains the number of iterations actually performed in deriving qðxÞ.
This information is also output if fail.code ¼ NE ITER FAIL or NE NOT ACC.

12: fail – NagError * Input/Output

The NAG error parameter (see the Essential Introduction).

6 Error Indicators and Warnings

NE_INT

On entry, m = hvaluei.
Constraint: m � 1.

NE_INT_ARRAY

On entry, p½i� 1� ¼ hvaluei.
Constraint: p½i� 1� � 0 for i ¼ 1; . . . ;m.

NE_ITER_FAIL

Iteration is divergent. Problem is ill-conditioned.

NE_NOT_ACC

Not all performance indices are small enough. Try increasing itmax: itmax ¼ hvaluei.

NE_REAL_2

On entry, xmin � xmax: xmin ¼ hvaluei, xmax ¼ hvaluei.

NE_REAL_ARRAY

On entry, x½i� 1� ¼ x½j� 1�: i ¼ hvaluei, j ¼ hvaluei, x½i� 1� ¼ hvaluei.
On entry, x½i� 1� < xmin or > xmax: i ¼ hvaluei, x½i� 1� ¼ hvaluei xmin ¼ hvaluei,
xmax ¼ hvaluei.

NE_ALLOC_FAIL

Memory allocation failed.
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NE_BAD_PARAM

On entry, parameter hvaluei had an illegal value.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please consult NAG for assistance.

7 Accuracy

A complete error analysis is not currently available, but the method gives good results for reasonable
problems.

It is important to realise that for some sets of data, the polynomial interpolation problem is ill-conditioned.
That is, a small perturbation in the data may induce large changes in the polynomial, even in exact
arithmetic. Though by no means the worst example, interpolation by a single polynomial to a large
number of function values given at points equally spaced across the range is notoriously ill-conditioned
and the polynomial interpolating such a data set is prone to exhibit enormous oscillations between the data
points, especially near the ends of the range. These will be reflected in the Chebyshev coefficients being
large compared with the given function values. A more familiar example of ill-conditioning occurs in the
solution of certain systems of linear algebraic equations, in which a small change in the elements of the
matrix and/or in the components of the right-hand side vector induces a relatively large change in the
solution vector. The best that can be achieved in these cases is to make the residual vector small in some
sense. If this is possible, the computed solution is exact for a slightly perturbed set of data. Similar
considerations apply to the interpolation problem.

The residuals y
ðkÞ
i � qðkÞðxiÞ are available for inspection. To assess whether these are reasonable, however,

it is necessary to relate them to the largest function and derivative values taken by qðxÞ over the interval
½xmin; xmax�. The following performance indices aim to do this. Let the kth derivative of q with respect to
the normalised variable �xx be given by the Chebyshev-series

1
2
ak0T 0ð�xxÞ þ ak1T 1ð�xxÞ þ . . .þ akn�1�kTn�1�kð�xxÞ:

Let Ak denote the sum of the moduli of these coefficients (this is an upper bound on the kth derivative in
the interval and is taken as a measure of the maximum size of this derivative), and define

Sk ¼ max
i�k

Ai:

Then if the root-mean-square value of the residuals of qðkÞ, scaled so as to relate to the normalised variable
�xx, is denoted by rk, the performance indices are defined by

Pk ¼ rk=Sk; for k ¼ 0; 1; . . . ;max
i
ðpiÞ:

It is expected that, in reasonable cases, they will all be less than (say) 8 times the machine precision (this
is the accuracy criterion mentioned in Section 3), and in many cases will be of the order of machine

precision or less.

8 Further Comments

8.1 Timing

Computation time is approximately proportional to IT� n3, where IT is the number of iterations actually
used.

8.2 Divided-difference Strategy

In constructing each new coefficient in the Newton form of the polynomial, a new xi must be brought into
the computation. The xi chosen is that which yields the smallest new coefficient. This strategy increases
the stability of the divided-difference technique, sometimes quite markedly, by reducing errors due to
cancellation.
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8.3 Conversion to Chebyshev Form

Conversion from the Newton form to Chebyshev-series form is effected by evaluating the former at the n
values of �xx at which Tn�1ðxÞ takes the value �1, and then interpolating these n function values by a call
of nag_1d_cheb_interp_fit (e02afc), which provides the Chebyshev-series representation of the polynomial
with very small additional relative error.

8.4 Iterative Refinement

The iterative refinement process is performed as follows. First, an initial approximation, q1ðxÞ say, is
found by the technique described above. The rth step of the refinement process then consists of evaluating
the residuals of the rth approximation qrðxÞ, and constructing an interpolant, dqrðxÞ, to these residuals.
The next approximation qrþ1ðxÞ to the interpolating polynomial is then obtained as

qrþ1ðxÞ ¼ qrðxÞ þ dqrðxÞ:

This completes the description of the rth step.

The iterative process is terminated according to the following criteria. When a polynomial is found whose
performance indices (as defined in Section 7) are all less than 8 times the machine precision, the process
terminates after itmin further iterations (or after a total of itmax iterations if that occurs earlier). This will
occur in most reasonable problems. The extra iterations are to allow for the possibility of further
improvement. If no such polynomial is found, the process terminates after a total of itmax iterations.
Both these criteria are over-ridden, however, in two special cases. Firstly, if for some value of r the sum
of the moduli of the Chebyshev coefficients of dqrðxÞ is greater than that of qrðxÞ, it is concluded that the
process is diverging and the process is terminated at once (qrþ1ðxÞ is not computed). Secondly, if at any

stage, the performance indices are all computed as zero, again the process is terminated at once.

As the iterations proceed, a record is kept of the best polynomial. Subsequently, at the end of each
iteration, the new polynomial replaces the current best polynomial if it satisfies two conditions (otherwise
the best polynomial remains unchanged). The first condition is that at least one of its root-mean-square
residual values, rk (see Section 7) is smaller than the corresponding value for the current best polynomial.
The second condition takes two different forms according to whether or not the performance indices (see
Section 7) of the current best polynomial are all less than 8 times the machine precision. If they are, then
the largest performance index of the new polynomial is required to be less than that of the current best
polynomial. If they are not, the number of indices which are less than 8 times machine precision must not
be smaller than for the current best polynomial. When the iterative process is terminated, it is the
polynomial then recorded as best, which is returned to the user as qðxÞ.

9 Example

To construct an interpolant qðxÞ to the following data:

m ¼ 4; xmin ¼ 2; xmax ¼ 6;
x1 ¼ 2; p1 ¼ 0; y1 ¼ 1;

x2 ¼ 4; p2 ¼ 1; y2 ¼ 2; y
ð1Þ
2 ¼ �1;

x3 ¼ 5; p3 ¼ 0; y3 ¼ 1;

x4 ¼ 6; p4 ¼ 2; y4 ¼ 2; y
ð1Þ
4 ¼ 4; y

ð2Þ
4 ¼ �2:

The coefficients in the Chebyshev-series representation of qðxÞ are printed, and also the residuals
corresponding to each of the given function and derivative values.

This program is written in a generalised form which can read any number of data-sets.

9.1 Program Text

/* nag_1d_cheb_interp (e01aec) Example Program.
*
* Copyright 2001 Numerical Algorithms Group.
*
* Mark 7, 2001.
*/
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#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nage01.h>

int main(void)
{

/* Scalars */
double xmax, xmin;
Integer exit_status, i, pmax, ires, iy, j, k, m, n,

itmin, itmax, num_iter;
NagError fail;

/* Arrays */
double *a = 0, *perf = 0, *x = 0, *y = 0;
Integer *p = 0;

exit_status = 0;

INIT_FAIL(fail);
Vprintf("e01aec Example Program Results\n");

/* Skip heading in data file */
Vscanf("%*[^\n] ");

while (scanf("%ld%lf%lf%*[^\n] ", &m, &xmin, &xmax) != EOF)
{

if (m > 0)
{

/* Allocate memory for p and x. */
if (!(p = NAG_ALLOC(m, Integer)) ||

!(x = NAG_ALLOC(m, double)))
{

Vprintf("Allocation failure\n");
exit_status = -1;
goto END;

}

/* Read p, x and y arrays */
n = 0;
pmax = 0;
for (i = 1; i <= m; ++i)

{
Vscanf("%ld%lf", &p[i-1], &x[i-1]);
k = n + p[i-1] + 1;
/* We need to extend array y as we go along */
if (!(y = NAG_REALLOC(y, k, double)))

{
Vprintf("Allocation failure\n");
exit_status = -1;
goto END;

}
for (j = n + 1; j <= k; ++j)

Vscanf("%lf", &y[j-1]);
Vscanf("%*[^\n] ");
if (p[i-1] > pmax)

pmax = p[i-1];
n = k;

}

/* Allocate array a */
if ( !(a = NAG_ALLOC(n, double)) ||

!(perf = NAG_ALLOC(pmax+n+1, double)) )
{

Vprintf("Allocation failure\n");
exit_status = -1;
goto END;

}

itmin = -1;
itmax = -1;
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e01aec(m, xmin, xmax, x, y, p, itmin, itmax, a, perf, &num_iter,
&fail);

Vprintf("\n");
if (fail.code == NE_NOERROR)

{
Vprintf("Total number of interpolating conditions = %ld\n", n);
Vprintf("\n");
Vprintf("Interpolating polynomial\n");
Vprintf("\n");
Vprintf(" i Chebyshev Coefficient a(i+1)\n");

for (i = 1; i <= n; ++i)
Vprintf("%4ld%20.3f\n", i - 1, a[i-1]);

Vprintf("\n");

Vprintf(" x R Rth derivative Residual\n");
iy = 0;
ires = pmax + 1;
for (i = 1; i <= m; ++i)

{
for (j = 1; j <= p[i-1] + 1; ++j)

{
++iy;
++ires;
if (j - 1 != 0)

Vprintf(" %4ld%12.1f%17.6f\n",
j - 1, y[iy-1], perf[ires-1]);

else
Vprintf("%4.1f 0%12.1f%17.6f\n",

x[i-1], y[iy-1], perf[ires-1]);
}

}
}

else
{

Vprintf("Error from e01aec.\n%s\n", fail.message);
exit_status = 1;

}
}

}

END:
if (a) NAG_FREE(a);
if (x) NAG_FREE(x);
if (y) NAG_FREE(y);
if (p) NAG_FREE(p);
if (perf) NAG_FREE(perf);

return exit_status;
}

9.2 Program Data

e01aec Example Program Data
4 2.0 6.0
0 2.0 1.0
1 4.0 2.0 -1.0
0 5.0 1.0
2 6.0 2.0 4.0 -2.0

9.3 Program Results

e01aec Example Program Results

Total number of interpolating conditions = 7

Interpolating polynomial
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i Chebyshev Coefficient a(i+1)
0 9.125
1 -4.578
2 0.461
3 2.852
4 -2.812
5 2.227
6 -0.711

x R Rth derivative Residual
2.0 0 1.0 0.000000
4.0 0 2.0 0.000000

1 -1.0 -0.000000
5.0 0 1.0 -0.000000
6.0 0 2.0 -0.000000

1 4.0 0.000000
2 -2.0 0.000000
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